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Abstract

In this paper, we propose a simultaneous approach to incorporate inventory control decisions––such as

economic order quantity and safety stock decisions––into typical facility location models, which are used to

solve the distribution network design problem. A simultaneous model is developed considering a stochastic

demand, modeling also the risk pooling phenomenon. We present a non-linear-mixed-integer model and a

heuristic solution approach, based on Lagrangian relaxation and the sub-gradient method. In a numerical
application, we found that the potential cost reduction, compared to the traditional approach, increases

when the holding costs and/or the variability of demand are higher.
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1. Introduction

The standard literature on supply chain management classifies the problems into three hier-
archical levels: strategic (long term), tactical (medium term), and operational (short term), though
the limits between each level remain unclear. The usual approach to solve these problems has
typically been to tackle them in isolation from one another. In practice, strategic decisions are
made by top managers, while the tactical and operational decisions are made by bottom level
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managers. This situation tends to promote incompatibilities and incoherence between each level.
For instance, facility location problems are considered as strategic, imposing a strong simplifi-
cation regarding tactical and operational aspects directly related to the optimal location.
Examples of these tactical/operational aspects are the inventory control policy, the choice of
transportation mode/capacity, warehouse design and management, vehicle routing, among others.

The aim of this paper is to incorporate tactical/operational decisions into to the facility location
problem solution scheme. Specifically, inventory management decisions will be simultaneously
modeled with the distribution network design. This inclusion acquires especial relevance in the
presence of high holding costs (e.g. frozen food industry) and high-variability demands. An
example is provided to illustrate the relevance of this issue. Fig. 1 shows a distribution network
where a single plant supplies products to regional warehouses, and these distribute products to
retailers or customers. The ownership of the chain is assumed to belong to a single decision maker
responsible for the holding cost at each facility, as well as all the transportation costs. In Fig. 1,
warehouse 1 sends products to retailers 1 and 2, each of which has a stochastic demand with
means d1 and d2, respectively, and variances u1 and u2, respectively. Warehouse 2 supplies
products to retailers 3, 4 and 5, and warehouse 3, to retailers 6 and 7. The operation of the
warehouses incurs two type of cost: one is proportional to the average supplied demand (made up
of holding and handling costs), and the other one is proportional to the standard deviation of
supplied demand (due to the safety stock). Under constant lead times and levels of service, the
safety stock is proportional to standard deviation of the supplied demand.

Thus, safety stock kept in warehouse 1, must be proportional to
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u1 þ u2

p
; safety stock in the

warehouse 2 must be proportional to
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u3 þ u4 þ u5

p
, and the one in warehouse 3 must be pro-

portional to
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u6 þ u7

p
. Clearly the system�s cost depends on the retailers assignment scheme. For

instance, if we closed warehouse 1 and its clients were assigned to warehouse 2, significant cost
changes occur. The fixed-installation cost of the warehouse 1 would be eliminated, and the
transportation costs (from plant to warehouses and from warehouses to retailers) would change;
safety stock cost would be reduced, because total safety stock kept on warehouse 2 would be
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Fig. 1. Graphic representation of the distribution network.
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proportional to
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u1 þ u2 þ u3 þ u4 þ u5

p
(clearly lower than

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u1 þ u2

p
þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u3 þ u4 þ u5
p

). This sit-
uation is known in the literature as risk pooling. This paper presents a non-linear-mixed-integer
model to find an optimal configuration of network, considering the installation, transportation,
ordering and holding, distribution network design with risk pooling effect model (DNDRP),
along with a solution approach based on Lagrangian relaxation.

In the case analyzed in this paper, the plant location is known and fixed. Therefore, the
transportation costs between the plant and the warehouses grouped into a single arc cost between
warehouses and retailers. This situation can be easily modified, for a more general setting. The
inventory policy at the plant is not modeled explicitly.

The model stated on this paper is an extension of the classical capacitated facility location
problem, which is already NP-hard. Thus, if we use this model to solve a great instance (which are
easy to find in the real world), any commercial package will take a lot of time to solve the model for
these instances, or even will not be able to solve it. Then, is necessary to develop a solving ap-
proach. The numerical results developed in this paper consider a relative little instance, especially
to compare the results obtained to solve optimally the model, with to solve heuristically this model.

The next section presents a literature review. In Section 3 the inventory control policy is
analyzed and the objective function of the problem is developed. Section 4 presents the DNDRP
model, which solve simultaneously facility location and inventory control decisions. Section 5,
presents a solution approach to solve the DNDRP model. The solution approach is based on a
combination of Lagrangian relaxation and the sub-gradient method. Section 6 reports the
numerical results and their interpretation. Finally, Section 7 presents the conclusions and some
future research lines.
2. Literature review

Facility location problems (FLP), which are typically used to design distribution networks,
involves determining the sites to install resources, as well as the assignment of potential consumers
to those resources. One example of FLP, is the location of manufacturing plants, the assignment
of warehouses to these plants and finally the assignment of retailers to each warehouse. This
family of problems typically assume a linear cost function and a set of deterministic demands for
the customers considered. These assumptions avoid to model interactions between facility loca-
tion and inventory control decision. More precisely the phenomenon widely studied and known as
risk pooling, cannot be modeled with FLP.

Bramel et al. (2000) show three models to solve classical cases of FLP. The first one, called
P-Median Problem, deals with the optimal location of P identical warehouses, for which there are
M candidate sites. These warehouses must serve incoming orders from N retailers. This model
does not consider installation costs, and the capacity of each warehouse is unlimited. The second
problem is called capacitated facility location problem (CFLP). In this case the number of
warehouses is variable and there are capacity constraints for each warehouse, as well as instal-
lation fixed costs. The third model, called distribution system design problem (DSDP), considers
multiple plants with fixed capacities (the number and location of plants are fixed and known), and
considers K different products in contrast with the single-product previous models. Daskin (1995)
develops a similar and deeper review of logistics network design problems. These models are used
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to design distribution networks, but a common factor is that anyone include tactical decisions, as
the inventory control, levels of service, vehicle routing decisions, etc. Thus, these models keeps the
strategic issues, as facility location decisions, unlinked from tactical and operational issues.

Nozick (2001) presents a model based on the CFLP, which considers covering restrictions, i.e., a
minimum demand to be covered by each warehouse. This criterion establishes that a customer is
covered by a given warehouse, if and only if it is located within a given distance from that par-
ticular warehouse. This model allows to consider the level of service perceived by customers, in
terms of time or distance, but does not consider holding cost and level of service in terms of the
fulfilled effectively demand.

Melkote et al. (2001) show an integrated model for transportation network design and facility
location problem. In addition to the standard aspects of the FLP, the model must identify the arcs
on which to move products, considering transference nodes. In some practical cases, the instal-
lation of arcs is considered as a tactical decision, in contrast to the facility location decisions.
Thus, this paper includes tactical decisions into a FLP, but inventory control decisions remains
un-modeled.

In our paper we generalize the CFLP model, including simultaneously inventory control
decisions. Furthermore, this approach can be easily applied into any FLP, as the models discussed
in Bramel et al. (2000), Daskin (1995), Nozick (2001) and Melkote et al. (2001), among others.

In terms of inventory management, Winston (1997), Simchi-Levi et al. (2000), Bowersox et al.
(1996), Anderson (1994) and Coyle et al. (1992), present the basic models for inventory control,
on which the most used commercial-packages are based. In these works, the classic EOQ 1 model,
and its typical variations (price discounting, continuous production or replenishment rate, etc.)
are introduced. Porteus (1990) shows a selection of models based on the classic newsvendor

problem, which considers a stochastic demand governed by a generic probability distribution
function and a penalty cost for unfulfilled demand. He sets ordering quantities, which minimize
the ordering, holding and unfulfilled demand costs. Furthermore, these models are developed only
for a single period, considering initial stock and partial backlogging. These works, Winston
(1997), Simchi-Levi et al. (2000), Bowersox et al. (1996), Anderson (1994), Coyle et al. (1992) and
Porteus (1990), consider only a single location and, the demand and the level of service do not
depend on the customers assigned to this location.

Cachon (2001) and Axs€ater (2000) develop exact approaches to evaluate the system�s cost for a
two-echelon supply chain (one-warehouse-multi-retailer system), considering a periodic review
and continuous review, respectively. These approaches consider the order quantities, the re-order-
points, as fixed parameters. Ettl et al. (2000) analyze a complex network of supply processes,
manufacturing stages and end consumers, determining re-order-points for each site of the net-
work, given a set of service levels for each site that serves end consumers. This model minimizes
the holding cost for the entire system and allows to determine the service levels, for a given set
of re-order points. The sites are modeled as infinite-server queues, where the demand follows
a compound Poisson process and the stochastic service-times are deduced trough the order-
ing process at each site. In Cachon (2001), Axs€ater (2000) and Ettl et al. (2000), more gen-
eral assumptions and more complex networks are considered, in contrast to the previous
1 Economic order quantity.
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works––Winston (1997), Simchi-Levi et al. (2000), Bowersox et al. (1996), Anderson (1994), Coyle
et al. (1992), and Porteus (1990). But, the network cannot be modified, in terms of assignment of
the customers and installation of the warehouses. Thus, interactions between facility location and
inventory control decisions, among others similar interactions, cannot be modeled.

Simchi-Levi et al. (2000), Chen et al. (2000), Lee et al. (1997a,b) and Fransoo et al. (2000),
investigate the distortion of demand at each stage of a supply chain, from the final consumers to
upstream stages. This phenomenon is known as the bullwhip effect. The authors explain the causes
and the consequences of the bullwhip effect, and describe some strategies to cope with this
problem, as well as different methods for its measurement. Furthermore, Chen (1999a), Chen
(1999b), Cachon et al. (2000), Lee et al. (2000), and Xu et al. (2000), investigate different aspects of
the information management associated with the inventory control. These issues (the bullwhip
effect and the levels of shared information) can be included into the DNDRP model, if we con-
sidered a greater number of stages, or if we explicitly modeled the inventory decisions at the plant
or central warehouse. The latter would allows a comparison of a non-communicative network
versus another one with different levels of information sharing. This incorporation is a straight-
forward extension of the DNDRP model.
3. Inventory control policy and total system cost

At any site or warehouse i, we assume a continuous inventory revision, and a ðQi;RPiÞ 2 policy
to meet a stochastic demand pattern. Furthermore, we assume a stochastic demand with mean Di

(units of product per time unit) and variance Ui, for each warehouse i. We also consider that the
plant takes a lead time of LTi to fulfill an incoming order from warehouse i.

The evolution of the inventory level at warehouse i is showed in Fig. 2. Note that when the
inventory level falls below RPi, an order ofQi units is triggered, which is received LTi time units later.
Once the order is placed, a difference appears between the on-hand-inventory (continuous line), and
the inventory-position (segmented line). This difference vanishes when the units arrive at site i.

This policy does not penalize unfulfilled demands. Instead it sets a re-order-point RPi. Once an
order is submitted the inventory level should cover the demand produced during lead time LTi,
with a given probability 1� a. This probability is known as the level of service for the system. The
level-of-service constrain can be expressed as follows:
2 i.e
ProbðDðLTiÞ6RPiÞ ¼ l� a ð1Þ
where DðLTiÞ is the random demand during the lead time, at warehouse i. If we assume a Nor-
mally distributed demand, RPi can be determined as follows:
RPi ¼ Di � LTi þ Z1�a � SDi �
ffiffiffiffiffiffiffi
LTi

p
ð2Þ
where Z1�a is the value of the Standard Normal distribution, which accumulates a probability of
1� a. This parameter is assumed fixed for the entire network, determining a uniform level of
service for the system, which will be called K hereafter.
., a fixed quantity Qi is ordered to the supplier, once the inventory level falls to or below a re-order-point RPi.



Fig. 2. Evolution of the inventory level IiðtÞ at site i.
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Let HCi be the holding cost per unit of product and time unit for warehouse i ($/unit-day).
Then, the average holding cost rate for each warehouse i, based on expression (2), can be written
as
3 T
HCi � K �
ffiffiffiffiffiffiffi
LTi

p
�
ffiffiffiffiffi
Ui

p
þ HCi � Qi=2 ð3Þ
The first term in (3), is the average expenditure associated with safety stock kept at warehouse
iðK �

ffiffiffiffiffiffiffi
LTi

p
�
ffiffiffiffiffi
Ui

p
Þ. The second term of the expression (3), is the average expenditure incurred due

to the holding the order quantity Qi, which is the inventory used to cover the demand arisen
between two successive orders. Thus, if OCi

3 is the ordering cost at site i, RCi, is the transpor-
tation unit cost, between the plant and the warehouse i, and TPi is the elapsed time between two
consecutive orders for site i, the operation cost during this period is given by
RCi � Qi þ OCi þ
�
HCi � K �

ffiffiffiffiffiffiffi
LTi

p
�
ffiffiffiffiffi
Ui

p
þ HCi � Q=2

�
� TPi ð4Þ
Then, if we divide (4) by TPi (which equals Qi=Di), the cost rate incurred at site i is given by the
following expression:
ðRCi þ OCi=QiÞ � Di þ HCi � K �
ffiffiffiffiffiffiffi
LTi

p
�
ffiffiffiffiffi
Ui

p
þ HCi � Qi=2 ð5Þ
Now let us consider the following binary variables:

Zi it takes the value 1, if a warehouse is installed on site i, and 0 otherwise
Yij it takes the value 1 if the warehouse on site i serves customer j, and 0 otherwise

If dj is the average demand of retailer j, the total operational rate cost for the whole network
can be written as
XN
i¼1

�
HCi � K �

ffiffiffiffiffiffiffi
LTi

p
�
ffiffiffiffiffi
Ui

p
þ HCi � Qi=2

�
þ
XN
i¼1

XM
i¼1

ðRCi þ OCi=QiÞ � dj � Yij ð6Þ
his cost is incurred when an order is arisen, and it does not depend on the order size.
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In the last expression, and for the rest of the paper, we assume the following evident relation:
XM
j¼1

dj � Yij ¼ Di 8i ¼ 1; . . . ;N ð7Þ
which relate the average demand served by the warehouses with the average demand of the
customers. Furthermore, if TCij is the transportation unit cost between the warehouse i and the
retailer j, the associated cost rate of the entire network is
XN
i¼1

XM
j¼1

TCij � dj � Yij ð8Þ
Then, from expression (8) and the second term of the expression (6), the replenishment network�s
cost rate can be written as follows:
XN
i¼1

XM
j¼1

ðTCij þ RCi þ OCi=QiÞ � dj � Yij ð9Þ
Finally, lets consider the following parameters:

Fi installation fixed cost for warehouse i
TH planning horizon

Thus, if we consider the fixed installation cost for each warehouse, the total cost of system is
XN
i¼1

Fi � Zi þ TH �
XN
i¼1

HCi � K �
ffiffiffiffiffiffiffi
LTi

p
�
ffiffiffiffiffi
Ui

p
þ TH �

XN
i¼1

HCi �
Qi

2

þ TH �
XN
i¼1

XM
j¼1

TCij

�
þ RCi þ

OCi

Qi

�
� dj � Yij ð10Þ
TH allows to sum the installation cost incurred at the begin of the planning horizon, and the
rate cost incurred by the entire network. Furthermore, TH can be replaced by a factor which
depend on, beside of the time period, an interest rate of capital. Even, if the fixed cost for each
warehouse i, Fi, is a fixed cost rate, we can minimize the cost rate of the entire network, then we
must consider TH ¼ 1.

Finally, the objective function, given by the expression (10), is reformulated considering the
optimization of the order quantity Qi for each warehouse i. In this case we assume there is not
capacity constraint for the order quantities. Thus, differentiating the objective function in terms of
Qi, for each i ¼ 1; . . . ;N , and equaling to zero (minimizing the system cost in a centralized ap-
proach) we obtain:
TH � HCi

2
� TH � OCi

Q2
i
�
XM
j¼1

dj � Yij ¼ 0 ð11Þ
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From the Eq. (11) we obtain:
Q�
i ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 � OCi � Di

HCi

s
8i ¼ 1; . . . ;N ð12Þ
Note that the expression (12) corresponds to the same outcome of the classical EOQ model. This
is an interesting results, because the isolated optimization gives the same outcome that the cen-
tralized optimization. However, there is a little aspect which must be noted. In the expressions (10)
and (12) the ordering cost, OCi, and the holding cost, HCi, should correspond to the total ordering
and holding costs of the system, including the expenditure incurred by the warehouses and by the
plant, because they are incurred by the same owner. Furthermore, the expression (12) differ from
static-sequential EOQ model, because the former depend of configuration of network, given by
the variables Yij and Zi, trough the variable Di. Thus, if we modify the network, then, the optimal
order quantity will change, similar to a best response function. Then, a bi-level problem is
modeled simultaneously as a single-level problem.

Replacing (12) in the expression (10), the objective function can be expressed as follows:
XN
i¼1

Fi � Zi þ
XN
i¼1

XM
j¼1

TH � ðTCij þ RCiÞ � dj � Yij þ
XN
i¼1

TH �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2:HCi � OCi

p
�
ffiffiffiffiffi
Di

p

þ
XN
i¼1

TH � HCi � K �
ffiffiffiffiffiffiffi
LTi

p
�
ffiffiffiffiffi
Ui

p
ð13Þ
We must note that
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 � HCi � OCi

p
�
ffiffiffiffiffi
Di

p
represents the optimal expenditure of the EOQ model,

considering the ordering and holding costs.
4. Formulation of DNDRP model

In this section we present the model to solve the distribution network design with risk pooling
problem, DNDRP, based on the inventory control policy stated in Section 3, and the objective
function given by expression (13). This model is an extension of the capacitated facility location
problem, CFLP, and consist of the determination of an optimal configuration of the distribution
network, taking inventory decisions and the associated cost, into account. We assume there is a
single owner of the network, who is responsible of the entire cost of the system. This assumption is
consistent with a practical case studied, given by the distribution system of a firm which dis-
tributes and commercializes frozen food in Chile.

The DNDRP model, should decide where to install warehouses, with N potential sites, to serve
a set of M retailers. Each retailer must be served by only one-warehouse. The model must locate
warehouses and assign retailers to them, considering capacity constraints. Beside of the para-
meters and the variables defined in Section 3, let us define the following parameters:

Capi capacity at warehouse i
uj variance of the demand per time unit for customer or retailery j
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The DNDRP model is the following:
Min
XN
i¼1

Fi � Zi þ
XN
i¼1

XM
j¼1

TH � ðTCij þ RCiÞ � dj � Yij þ
XN
i¼1

TH �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2:HCi � OCi

p
�
ffiffiffiffiffi
Di

p

þ
XN
i¼1

TH � HCi � K �
ffiffiffiffiffiffiffi
LTi

p
�
ffiffiffiffiffi
Ui

p
ð14Þ

subject to :
XN
i¼1

Yij ¼ l 8j ¼ 1; . . . ;M ð15Þ

XM
j¼1

dj � Yij 6Capi � Zi 8i ¼ 1; . . . ;N ð16Þ

XM
j¼1

dj � Yij ¼ Di 8i ¼ 1; . . . ;N ð17Þ

XM
j¼1

Yij � uj ¼ Ui 8i ¼ 1; . . . ;N ð18Þ

Zi; Yij 2 f0:1g 8i; . . . ;N ;8j; . . . ;M ð19Þ

Eq. (15) assures that each retailer is served exactly by one warehouse. Eq. (16) assures that the

capacity of the warehouses is not exceeded (only if the warehouse is installed). Eq. (17) computes
the served average demand by warehouse i. Eq. (18) computes the total variance of served demand
by warehouse i. Implicitly we assume that the demands are independently distributed across the
retailers, thus all the covariance terms are zero. Finally (19) states integrality for the variables Yij
and Zi.

We must note that the DNDRP model is NP-hard, because it is an extension of the CFLP
model, which is already NP-hard. In addition, the objective function is non-linear, resulting in a
model which is hard to solve, especially for great instances. Thus an heuristic approach to solve
this problem must be developed.
5. Solution approach

This section describes the approach used to solve the DNDRD model, which is based on
Lagrangian relaxation and the sub-gradient method. The cost parameters are expressed as fol-
lows:
Cij ¼ TH � ðRCi þ TCijÞ � dj; CLi ¼ TH �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2:HCi � OCi

p
; CSi ¼ TH � HCi � K �

ffiffiffiffiffiffiffi
LTi

p

Then, the objective function can be written as follows:
XN
i¼1

Fi � Zi þ
XN
i¼1

XM
j¼1

Cij � Yij þ
XN
i¼1

CLi �
ffiffiffiffiffi
Di

p
þ
XN
i¼1

CSi �
ffiffiffiffiffi
Ui

p
ð20Þ
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5.1. A stronger formulation and Lagrangian relaxation of DNDRP

We proposes a stronger formulation for the DNDRP, incorporating two additional constraints
into the model, given by
XN
i¼1

Di 6DT ¼
XM
j¼1

dj ð21Þ

XN
i¼1

Ui 6 VT ¼
XM
j¼1

uj ð22Þ
Expression (21) assures that the average total demand assigned to the warehouses does not exceed
the total average demand of the retailers. Eq. (22) guarantees that the variance of the demand
assigned to the warehouses does not exceed the total variance of the demand of the retailers. These
constraints are redundant, because they correspond (on equality) to the summation of (17) and
(18), respectively, over all the warehouses. However they are not redundant for the sub-problems
obtained from the relaxation proposed afterward. Furthermore, constraints (17) and (18) are
replaced by
XM
j¼1

Yij � dj 6Di 8i ¼ 1; . . . ;N ð23Þ

XM
j¼1

Yij � uj 6Ui 8i ¼ 1; . . . ;N ð24Þ
Note that constraints (23) and (24) reach equality at optimality––for fixed values of Yij and Zi, it is
always better to reduce Di and Ui. Thus, the new constraints (21) and (22) are also satisfied on
equality at optimality. Then, the changes on constraints (17) and (18) do not alter the feasibility
and optimality of the problem, but they are helpful for the relaxation scheme to be introduced in
Section 5.3.

We propose to relax the constraints (17) and (18), which link Di and Ui (continuous variables)
with Zi and Yij (integer variables). Then, associating the dual variables x and k to the constraints
(17) and (18), respectively, the model can be written as follows:
hðx; kÞ ¼ Min
XN
i¼1

�
CLi �

ffiffiffiffiffi
Di

p
� xi � Di

�
þ
XN
i¼1

�
CSi �

ffiffiffiffiffi
Ui

p
� ki � Ui

�
þ
XN
i¼1

Fi � Zi

þ
XN
i¼1

XM
j¼1

ðCij þ xi � dj þ ki � uiÞ � Yij

subject to : ð15Þ; ð16Þ; ð19Þ; ð21Þ and ð22Þ
ð25Þ
The optimization algorithm must solve the relaxed problem for a given set of Lagrangian
multipliers in an iterative structure, which is explained in the next section.
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5.2. Sub-problems solving

For given values of the vectors x and k at iteration k, xk and kk, hðxk; kkÞ can be decomposed
into three sub-problems. The first two sub-problems are the following:
SP1k Min
XN
i¼1

�
CLi �

ffiffiffiffiffi
Di

p
� xk

i � Di

�

subject to :
XN
i¼1

Di 6DT

Di P 0 8i ¼ 1; . . . ;N

ð26Þ

SP2k Min
XN
i¼1

�
CSi �

ffiffiffiffiffi
Ui

p
� kki � Ui

�

subject to :
XN
i¼1

Ui 6 VT

Ui P 0 8i ¼ 1; . . . ;N

ð27Þ
Solving SP1k and SP2k, implies to search the warehouse r, that gives the minimum value
for CLr �

ffiffiffiffiffiffiffi
DT

p
� xk

r � DT , and the warehouse w, that gives the minimum value for CSw �
ffiffiffiffiffiffi
VT

p
�

kkw � VT . If the values of these expressions were negative, the optimal solution can be obtained
assigning the following value (demonstration is in Appendix A):
Dk
i ¼

DT i ¼ r
0 i 6¼ r

�
and Uk

i ¼ VT i ¼ w
0 i 6¼ w

�
ð28Þ
If CLr �
ffiffiffiffiffiffiffi
DT

p
� xk

r � DT P 0, then Uk
i ¼ 0 for each warehouse i, and if CSw �

ffiffiffiffiffiffi
VT

p
� kkw � VT P 0,

Dk
i ¼ 0 for each warehouse i.
The third sub-problem is more cumbersome, though it is a widely studied problem, and it is a

CFLP. This sub-problem is
SP3k Min
XN
i¼1

Fi � Zi þ
XN
i¼1

XM
j¼1

ðCij þ xk
i � dj þ kki � ujÞ � Yij ð29Þ

subject to :
XM
j¼1

dj � Yij 6Capi � Zi 8i ¼ 1; . . . ;N ð30Þ

XN
i¼1

Yij ¼ 1 8j ¼ 1; . . . ;M ð31Þ

Yij; Zi 2 f0; 1g 8i ¼ 1; . . . ;N ; 8j ¼ 1; . . . ;M ð32Þ
SP3k, or CFLP, can be solved through a myriad of different methods––see Bramel et al. (2000),
Daskin (1995), Nozick (2001) and Melkote et al. (2001). Once this problem is solved, the primal
optimal values Zk

i and Y k
ij , for the kth iteration are known.
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5.3. Update the Lagrangian multipliers

Once the sub-problems are solved, we must update the values of the dual variables, xk
i and kki ,

to augment the value of hðx; kÞ. The updating procedure selected here is the sub-gradient method,
which considers violation-vectors, VDk and VUk, as the ascending direction. The components of
the violation-vectors can be obtained as follows:
VDk
i ¼

PM
j¼1

Y k
ij � dj � Dk

i

VUk
i ¼

PM
j¼1

Y k
ij � uj � Uk

i

8i ¼ 1; . . . ;N ð33Þ
The steps size for iteration k, are determined by
akx ¼ qk ðZ
Sup
k � ZInf

k Þ
kVDkk2

and akk ¼ qk ðZ
Sup
k � ZInf

k Þ
kVUkk2

ð34Þ
where ZSup
k is an upper bound for the primal problem, and ZInf

k is a lower bound for the dual
problem––which are available on iteration k. Furthermore, qk is a control parameter which must
be stated from an empirical analysis, and typically satisfies 0 < qk < 2. Thus, the equations for
updating the Lagrangian variables are
xkþ1
i ¼ Maxf0;xk

i þ akx � VDk
i g and kkþ1

i ¼ Maxf0; kki þ akk � VUk
i g ð35Þ
The procedure to obtain ZSup
k (known as the Lagrangian heuristic) consists, in to calculate a

feasible solution for the primal problem, which, in this case, is based on the solution stated for
SP3k, considering:
D
k
i ¼

XM
j¼1

Y k
ij � dj and U

k
i ¼

XM
j¼1

Y k
ij � uj ð36Þ
In consequence, ZSup
k is calculated as
ZSup
k ¼ MinfZSup

k�1;Zkg ð37Þ

where
Zk ¼
XN
i¼1

CLi �
ffiffiffiffiffiffi
D

k
i

q
þ
XN
i¼1

CSi �
ffiffiffiffiffiffi
U

k
i

q
þ
XN
i¼1

Fi � Zk
i þ

XN
i¼1

XM
j¼1

Cij � Y k
ij ð38Þ
On the other hand, ZInf
k is calculated through the next expression:
ZInf
k ¼

XN
i¼1

�
CLi �

ffiffiffiffiffiffi
Dk

i

q
� xk

i � Dk
i

�
þ
XN
i¼1

 
CSi �

ffiffiffiffiffiffi
Uk

i

q
� kki � Uk

i

!
þ
XN
i¼1

Fi � Zk
i

þ
XN
i¼1

XM
j¼1

ðCij þ xk
i � dj þ kki � ujÞ � Y k

ij ð39Þ
The algorithm keeps running until some convergence criterion is met (see Appendix B).



P.A. Miranda, R.A. Garrido / Transportation Research Part E 40 (2004) 183–207 195
6. Results and discussion

In this section we show the main results obtained from applying the DNDRP to a numerical
case. This application of DNDRP incorporates the choice of two different capacity levels for each
warehouse––one decision is whether to install it or not, and the other one is choosing how much
capacity to allocate. Considering more than two capacity levels is a straightforward extension.
The capacity levels are modeled considering the constraints (40), where ZM

i and ZH
i are binary

variables, taking the value 1 if a warehouse is installed on site i with medium (CapMi) or high
capacity (CapHi), respectively, and 0 otherwise. The fixed installation costs are CfixMi and
CfixHi, respectively. Furthermore, we must assure for each site i, that only one variable of ZM

i and
ZH
i be equal to 1 (ZH

i þ ZM
i 6 1;8i ¼ 1; . . . ;N ).
Table

Param

Para

Cfix

Cfix

Cap

Cap

HC

OC

LT

RC
XM
j¼1

Yij � dj 6 ZM
i � CapMi þ ZH

i � CapHi 8i ¼ 1; . . . ;N ð40Þ
We consider 10 potential warehouse locations, 20 customers, and different sets of parameters
generating 25 cases. Tables 1–3, show the parameters values of the base case (Case 0), which are
then varied to obtain the other cases.

The nomenclature is as follows: xVC represents a (+ or )) x% change in the value of the de-
mand�s variation coefficient, with respect to the base case; xHC represents a (+or )) x% change in
the value of the parameter HCi, with respect to the base case; finally, Y_xHC, represents a (+ or ))
x% change in the value of the parameter HCi, for the Case Y (being Y one of the changes in the
demand�s variation coefficient explained above). For all cases, we consider K ¼ 1:96, 1.28, 0.67,
and 0 (associated with 97.5%, 90%, 75% and 50% for the level of service) and TH ¼ 1000
(planning horizon). Any sensitivity analysis must give similar results if we changed other
parameters (e.g. lead times, level of service, or ordering cost), since they would change the same
cost factors.

We compare the results obtained from the DNDRP (including the choice of two different
capacities) and the results obtained from the classical CFLP as a benchmark, within a sequential
approach, SDND––sequential distribution network design. The SDND approach consists in to
evaluate the configuration found by CFLP (which only considers the installation and transpor-
tation cost) with the objective function of the DNDRP––Eq. (13). Note that CFLP is equivalent
to the DNDRP, when HCi ¼ 0, for i ¼ 1; . . . ;N , where the variance of the demand does not affect
1

eters of the base case, associated with warehouses W-i

meter W-1 W-2 W-3 W-4 W-5 W-6 W-7 W-8 W-9 W-10

M 2,391,084 1,722,391 1,925,025 2,107,396 1,722,391 2,107,396 1,864,235 2,127,660 1,985,816 2,046,606

H 3,347,518 2,411,348 2,695,035 2,950,355 2,411,348 2,950,355 2,609,929 2,978,723 2,780,142 2,865,248

M 47 49 47 42 46 46 46 49 49 44

H 72 75 82 70 80 63 76 73 82 78

184 133 148 163 133 163 144 164 153 158

846 757 810 767 669 869 686 786 656 654

4 3 3 3 2 4 2 3 2 2

62 46 55 47 30 66 33 51 28 27



Table 2

Parameters of the base case, demand of customers C-j

Customer C-1 C-2 C-3 C-4 C-5 C-6 C-7 C-8 C-9 C-10

Average 10 15 16 15 12 18 17 11 14 14

Variance 108 221 295 268 135 323 306 117 166 194

VC 0.962 1.009 0.932 0.916 1.033 1.002 0.972 1.017 1.087 1.005

Customer C-11 C-12 C-13 C-14 C-15 C-16 C-17 C-18 C-19 C-20

Average 15 12 19 18 19 14 13 14 10 12

Variance 212 139 405 287 402 233 141 207 105 139

VC 1.030 1.018 0.944 1.063 0.948 0.917 1.095 0.973 0.976 1.018

Table 3

Parameters of the base case, assignment cost between warehouse W-i and customer C-j

TCij W-1 W-2 W-3 W-4 W-5 W-6 W-7 W-8 W-9 W-10

C-1 435 234 90 483 195 603 333 396 300 411

C-2 250 128 120 260 118 350 196 242 148 224

C-3 243 243 264 159 166 172 120 170 151 46

C-4 342 396 468 200 352 64 268 300 306 174

C-5 455 322 262 427 112 440 152 177 325 305

C-6 111 70 168 175 175 266 216 263 65 180

C-7 164 86 165 174 144 257 195 243 74 155

C-8 158 125 300 275 332 447 384 474 144 310

C-9 186 51 177 274 255 417 323 379 158 300

C-10 381 385 402 229 287 160 171 216 278 130

C-11 94 132 238 178 266 304 296 356 98 226

C-12 397 327 330 285 167 295 57 145 267 160

C-13 331 265 238 257 131 244 77 33 235 168

C-14 158 185 231 71 185 156 176 211 93 85

C-15 306 206 115 314 107 345 181 176 221 251

C-16 177 124 212 188 192 285 220 297 47 184

C-17 486 353 253 436 143 473 189 182 346 332

C-18 282 122 94 293 122 379 231 272 184 257

C-19 384 264 258 363 117 423 192 279 237 228

C-20 412 220 70 462 212 552 330 372 307 400
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the total systems cost. Furthermore, evaluating the solution found by CFLP into the Eq. (13), is
equivalent to solve sequentially the inventory decisions: the re-order-point and the order quan-
tities are determined for each installed warehouse, i.e., considering the configuration found by
CFLP as fixed. It is clear that the SDND will give a sub optimal solution (i.e., a more expensive
network); the question we need to answer is under what circumstances the solution found by the
DNDRP is significantly better than the simpler one, found by the SDND, i.e., what is the effect of
demand variability, the magnitude of the holding costs, or the level of service.

We present two sets of results: those obtained by solving the DNDRP directly trough Branch &
Bound with LINGO 6.0, and using the heuristic presented in Section 5 (DNDRP-LINGO and
DNDRP-LR, respectively, in figures and tables). The first comparison (DNDRP-LINGO versus
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SDND) denotes the contribution of the model in contrast to use the classical sequential approach,
and the second comparison (DNDRP-LR versus SDND) denotes the potential benefit that can be
obtained by using the heuristic approach, instead of the exact approach, in contrast to use SDND.
The comparisons are presented in Tables 4–7. These tables show the objective function value
Table 4

Results of applying SDND and DNDRP, considering 50% for the level of service

Solutions summarize SDND DNDRP-LINGO DNDRP-LR

Total cost Total cost % Save Total cost % Save

Case X_)50HC 600,891 600,891 0.00 605,891 )0.83
Case X_)25HC 624,418 624,418 0.00 624,521 )0.02
Case X 644,260 639,400 0.75 644,260 0.00

Case X_+25HC 661,725 653,912 1.18 661,725 0.00

Case X_+50HC 677,493 667,009 1.55 677,297 0.03

Table 5

Results of applying SDND and DNDRP, considering 75% for the level of service

Solutions summarize SDND DNDRP-LINGO DNDRP-LR

Total cost Total cost % Save Total cost % Save

Case )50VC_)50HC 638,634 634,749 0.61 638,634 0.00

Case )25VC_)50HC 657,397 651,814 0.85 657,062 0.05

Case )25HC 676,273 666,040 1.51 675,319 0.14

Case 25VC_)50HC 695,100 681,690 1.93 685,682 1.35

Case 50VC_)50HC 713,981 701,800 1.71 702,577 1.60

Case )50VC_)25HC 681,078 670,022 1.62 681,078 0.00

Case )25VC_)25HC 709,244 700,592 1.22 707,435 0.26

Case )25HC 737,581 716,999 2.79 723,870 1.86

Case 25VC_)25HC 765,844 745,464 2.66 749,149 2.18

Case 50VC_)25HC 794,189 767,568 3.35 774,510 2.48

Case )50VC 719,798 702,188 2.45 719,552 0.03

Case )25VC 757,348 733,394 3.16 754,136 0.42

Case 0 795,126 764,802 3.81 776,477 2.35

Case 25VC 832,805 803,743 3.49 809,202 2.83

Case 50VC 870,593 833,453 4.27 843,010 3.17

Case )50VC_25HC 756,168 741,875 1.89 753,221 0.39

Case )25VC_25HC 803,116 780,789 2.78 782,800 2.53

Case )50HC 850,348 817,927 3.81 825,064 2.97

Case 25VC_25HC 897,458 854,978 4.73 889,787 0.85

Case 50VC_25HC 944,704 892,124 5.57 913,742 3.28

Case )50VC_50HC 790,842 770,508 2.57 786,917 0.50

Case )25VC_50HC 847,188 815,821 3.70 822,344 2.93

Case )50HC 903,876 860,402 4.81 873,417 3.37

Case 25VC_50HC 960,417 904,876 5.78 923,637 3.83

Case 50VC_50HC 1,017,120 949,467 6.65 974,373 4.20



Table 6

Results of applying SDND and DNDRP considering 90% for the level of service

Solutions summarize SDND DNDRP-LINGO DNDRP-LR

Total cost Total cost % Save Total cost % Save

Case )50VC_)50HC 672,670 663,049 1.43 671,856 0.12

Case )25VC_)50HC 708,352 699,400 1.26 707,888 0.07

Case )25HC 744,250 722,562 2.91 74,1043 0.43

Case 25VC_)50HC 780,055 752,327 3.55 761,681 2.36

Case 50VC_)50HC 815,963 785,060 3.79 793,812 2.71

Case )50VC_)25HC 732,091 720,178 1.63 729,556 0.35

Case )25VC_)25HC 785,616 765,311 2.58 781,257 0.55

Case )25HC 839,465 808,550 3.68 835,998 0.41

Case 25VC_)25HC 893,174 850,793 4.75 863,375 3.34

Case 50VC_)25HC 947,038 893,145 5.69 937,352 1.02

Case )50VC 787,831 767,490 2.58 783,668 0.53

Case )25VC 859,201 818,078 4.79 832,812 3.07

Case 0 931,003 880,998 5.37 898,893 3.45

Case 25VC 1,002,618 937,329 6.51 961,110 4.14

Case 50VC 1,074,440 993,807 7.50 1,025,370 4.57

Case )50VC_25HC 841,205 810,732 3.62 835,462 0.68

Case )25VC_25HC 930,426 880,938 5.32 921,643 0.94

Case )50HC 1,020,187 951,525 6.73 976,947 4.24

Case 25VC_25HC 1,109,715 1,021,945 7.91 1,057,050 4.75

Case 50VC_25HC 1,199,501 1,092,548 8.92 1,132,410 5.59

Case )50VC_50HC 892,877 851,702 4.61 888,706 0.47

Case )25VC_50HC 999,946 935,946 6.40 959,581 4.04

Case )50HC 1,107,664 1,020,647 7.86 1,055,350 4.72

Case 25VC_50HC 1,215,102 1,105,147 9.05 1,147,940 5.53

Case 50VC_50HC 1,322,849 1,189,867 10.05 1,240,400 6.23
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reached by SDND, the objective function value and the cost reduction (compared with SDND),
reached by DNDRP-LINGO and DNDRP-LR, for each case considering in the sensitivity
analysis, and considering different values for the level of service (50%, 75%, 90% and 97.5%).

The costs reduction given by DNDRP-LINGO compared with SDND, are summarized in Figs.
3 and 4 (considering only 75%, 90% and 97.5% for the level of service). The costs reduction
average in Fig. 3, for each value of the sensitivity in holding costs, and for each value of the level
of service, was obtained considering the cost reduction observed for each value of the sensitivity in
variation coefficient. In Fig. 4, in contrast, the costs reduction average, for each value of the
sensitivity in variation coefficient, and for each value of the level of service, was obtained con-
sidering the cost reduction observed for each value of the sensitivity in the holding cost.

We must note that the CFLP, in terms of the variables Zi, and Yij, gives the same result for all
the cases. This is so because it assumes deterministic demand and it neglects the inventory costs,
hence its result does not change if we modify the holding cost or the variability of demand.

In Figs. 3 and 4 (which only consider 75%, 90% and 97.5% for the level of service), we observe
clearly that the cost reduction reached by the DNDRP-LINGO is greater when the demand



Table 7

Results of applying SDND and DNDRP considering 97.5% for the level of service

Solutions summarize SDND DNDRP-LINGO DND-LR

Total cost Total cost % Save Total cost % Save

Case )50VC_)50HC 710,677 694,640 2.26 710,173 0.07

Case )25VC_)50HC 765,253 750,429 1.94 761,331 0.51

Case )25HC 820,159 792,872 3.33 814,437 0.70

Case 25VC_)50HC 874,922 835,949 4.45 846,521 3.25

Case 50VC_)50HC 929,843 879,138 5.45 899,983 3.21

Case )50VC_)25HC 789,112 768,936 2.56 786,916 0.28

Case )25VC_)25HC 870,982 833,355 4.32 843,183 3.19

Case )25HC 953,348 898,125 5.79 943,444 1.04

Case 25VC_)25HC 1,035,501 962,741 7.03 989,507 4.44

Case 50VC_)25HC 1,117,890 1,027,525 8.08 1,063,010 4.91

Case )50VC 863,872 828,161 4.13 860,043 0.44

Case )25VC 973,042 914,062 6.06 935,273 3.88

Case 0 1,082,874 1,000,429 7.61 1,032,900 4.61

Case 25VC 1,192,421 1,086,592 8.88 1,130,880 5.16

Case 50VC 1,302,283 1,172,978 9.93 1,218,510 6.43

Case )50VC_25HC 936,232 885,452 5.42 927,363 0.95

Case )25VC_25HC 1,072,691 992,827 7.45 1,032,390 3.76

Case )50HC 1,209,977 1,100,785 9.02 1,140,540 5.74

Case 25VC_25HC 1,346,907 1,208,486 10.28 1,262,940 6.23

Case 50VC_25HC 1,484,231 1,316,468 11.30 1,374,790 7.37

Case )50VC_50HC 1,006,920 941,386 6.51 999,905 0.70

Case )25VC_50HC 1,170,679 1,070,241 8.58 1,111,680 5.04

Case )50HC 1,335,431 1,189,911 10.90 1,251,530 6.28

Case 25VC_50HC 1,499,756 1,329,045 11.38 1,388,640 7.41

Case 50VC_50HC 1,664,553 1,458,628 12.37 1,531,880 7.97
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variability, the holding costs or the level of service, increase, especially due to the reduction of
inventory cost and the number of warehouses installed. For example, for +50% in the sensitivity
of the holding cost and a level of services of 97.5%, we observe a cost reduction average about
10%. Furthermore, when the sensitivity in variation coefficient is +50%, and for the same level of
service we observe a cost reduction average about 9%. In contrast, for a )50% in the sensitivity
of the holding cost and a level of service of 75%, we observe a cost reduction average about 1%,
and for a )50% in the sensitivity of the variation coefficient, for the same level of service, we
observe a similar cost reduction average. The latter result denotes the risk pooling phenomenon,
and denotes the contribution of the simultaneous model, DNDRP, to design the distribution
network.

On the other hand, if we considered the heuristic algorithm introduced in Section 5, which can
be necessary for a greater instances, in contrast to the instances considered in this paper, we will
reach a lower cost reduction. These comparisons are summarized in Figs. 5 and 6, for a level of
service values of 75%, 90% and 97.5%. We observe, for these values of level of service, that the
costs reduction average, are always greater than zero, assuring that the solutions found by
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Fig. 3. Average cost reduction, comparing SDND versus DNDRP solved using LINGO.
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Fig. 4. Average cost reduction, comparing SDND versus DNDRP solved using LINGO.
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DNDRP-LR (considering 75%, 90% and 97.5% for the level of service), are actually better than
the benchmark solution, which is found by SDND.

Finally, if we use a re-order point equivalent to expected demand during lead times, i.e., K ¼ 0
(which is equivalent to assume a deterministic demand, or to consider a 50% for the level of
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Fig. 5. Average cost reduction, comparing SDND versus DNDRP, solved using Lagrangian relaxation.
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Fig. 6. Average cost reduction, comparing SDND versus DNDRP, solved using Lagrangian relaxation.
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service), the model is indifferent of the variation coefficient. But, we must consider that the cost
factor associated with Di, TH �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 � HCi � OCi

p
, is dependent of holding cost, and the augmenting of

cost reduction in terms of holding costs hold. Thus, this term in the objective function denotes
another interaction between facility location and inventory control decisions (beside of risk
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pooling), which is not considered in typical FLP�s. If we used more warehouses, then, we obtain a
more expensive network in terms of the ordering and the holding cost (assuming a deterministic
demand). In Table 4, we observe the results of considering a level of service of 50%. It is observed,
the cost reduction given by DNDRP-LINGO, is lower (even being zero) for the lower values of
holding costs. However, if the holding costs are greater, the cost reduction are greater and could
be relevant. This results hold for DNDRP-LR, although in a lower magnitude. Even, for the
lowest-holding-cost cases, DNDRP-LR solution is worst than the SDND solution.

Acknowledging the fact that the computation time depends on an enormous number of factor
and that it cannot be transferred from one experience to another, it is illustrative to report that in
all the simulated cases, the DNDRP-LR always found the solution in less than 1 min; LINGO
instead took about 5 min in average to solve these instances. These results suggest that the
complexity of the problem precludes its exact solution when the problem size is higher.

We must remark that the sub-problem SP3k, showed in Section 5.1, was not solved with the
most efficient methods but rather with a general purpose subroutine in LINGO (Branch &
Bound). This condition should affect the performance of the LR heuristic and it could be im-
proved in further research––Bramel et al. (2000) and Daskin (1995) present different procedures
that might improve the LR heuristic performance if properly implemented. Furthermore, the step-
size parameter of the sub-gradient method, the convergence criterion (see Appendix B), and the
control parameter�s updating (see Section 5.2), were not ‘‘optimized’’ in the sense of using the
most efficient implementation available in the literature, but rather using a straightforward
implementation, possibly resulting in a non-efficient algorithm in terms of computation time.
7. Conclusions and future research

In the model introduced in our paper, DNDRP, which is used to design the distribution net-
work, we optimize the magnitude for the orders of warehouses to plant. In this optimization, is
interesting to note that the isolated optimization of the order quantities, gives the same results of
the centralized optimization of them. The difference between the centralized and the isolated
optimization, consists in the cost parameters considered (ordering and holding cost). The isolated
optimization considers the cost parameters of the warehouses, while the centralized one, considers
the cost parameters associated with the entire system.

We observe, in the numerical application discussed in Section 6, that the total cost reduction is
higher as the holding cost, ordering cost, lead times and/or level of service (measured as the
probability of satisfying all the demands) increase. These elements generate the expenditure in
inventory management, and can be modified by the decision makers within a supply chain. In
addition, when the variability of demand increases, the DNDRP achieves higher cost reductions.
Note that the complexity of the analyzed problem precludes the general use of exact algorithms,
especially for large size networks. Under these scenarios, the proposed LR heuristic offers an
efficient solution method.

We conclude that in supply chains where the products are perishable or of high value, as the
frozen food among others, the simultaneous approach (considering DNDRP model along with
the LR heuristic) appears as a valuable (and easy to work with) tool for assisting the decision
makers in the hard task of designing a distribution network.
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Furthermore, the time required to solve the DNDRP using the LR heuristic can be significantly
improved if we considered a more efficient procedure to solve SP3k at each iteration. For example,
if we simultaneously relax the constraints associated with capacity at each warehouse (constraints
(30) and/or (40)), and we develop a procedure more complex to search a feasible solution on each
step, we can improve the heuristic algorithm used to solve DNDRP (DNDRP-LR).

In terms of future research, it would be interesting to apply this simultaneous methodology to
more complex supply chains with more stages, considering the inventory at the production plants,
or even considering the production process and raw materials replenishment. Furthermore it is
possible to consider different levels of shared information between plants and warehouses,
allowing to model the bullwhip effect and its impact on the distribution network design. Another
unexplored extension of this methodology is the consideration of a more complex inventory
model for a supply chain with multiple products and multiple periods. Finally, this approach can
be incorporated into other strategic logistics and supply chain management problems, such as
transportation network design, covering problems associated with facility location models.
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Appendix A

In this appendix we demonstrate the property used to solve sub-problems SP1 and SP2 (stated
on Section 5.1). The Variables and parameters used in this appendix are the following:

Ui variance of demand served by warehouse i
CSi safety stock cost for warehouse i
ki dual multipliers associated to every warehouse i
VT variance of the aggregated demand in the system

The property used in Section 5.1, states that searching the optimal solution for the SP1 consists
in finding the warehouse t, that minimizes the value CSt

ffiffiffiffiffiffi
VT

p
� ktVT ; if this minimum value is

negative, then do the following:
U �
i ¼ VT if i ¼ t

0 if i 6¼ t

�
ðA:1Þ
The demonstration is based on mathematical induction and it is separated into two parts. Part I
shows the property in the case of 2 warehouses. Part II shows the property in case of N þ 1
warehouses, assuming that the property is true for N warehouses. In this appendix we assume that
CSi; and ki, are non-negative parameters.
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Part I

In this part of appendix we demonstrate the property for the smallest case, which considers two
warehouses. In this case we must solve the following problem: 4
4 In
SP12 Min CS1 �
ffiffiffiffiffiffi
U1

p
� k1 � U1 þ CS2 �

ffiffiffiffiffiffi
U2

p
� k2 � U2

s:t: :
U1 þ U2 ¼ VT

U1;U2 P 0

�
X

ðA:2Þ
If we characterize the feasible space, X , in term of its extreme points, given by
X 1 ¼ U 1
1

U 1
2

� �
¼ VT

0

� �
and X 2 ¼ U 2

1

U 2
2

� �
¼ 0

VT

� �
ðA:3Þ
the feasible points, X 2 X , can be represented by
X ¼ aX 1 þ ð1� aÞX 2 ¼ aVT
ð1� aÞVT

� �
ðA:4Þ
where 06 a6 1. Consequently ST12 is equivalent to
SP12 Min GðaÞ ¼ CS1
ffiffiffiffiffiffiffiffi
aVT

p
� k1aVT þ CS2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� aÞVT

p
� k2ð1� aÞVT

s:t: : 06 a6 1
ðA:5Þ
If we analyze d2G
da2 , which can be written as follows:
d2G
da2

¼ � CS1VT 2

4
ffiffiffiffiffiffiffiffi
aVT

p 3
� CS2VT 2

4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� aÞVT

p 3
ðA:6Þ
it is negative for 0 < a < 1, and is undefined if a ¼ 0 or a ¼ 1. Thus it is concluded that GðaÞ is
concave, and the optimal solution is always on the borders of the interval, which means that the
optimal solution is X ¼ X 1 or X ¼ X 2, which finally is equivalent to
U �
1

U �
2

� �
¼ VT

0

� �
or

U �
1

U �
2

� �
¼ 0

VT

� �
ðA:7Þ
Thus, property has been demonstrated for the smallest case, which considers 2 warehouses.
Part II

Here, we assume that the property is valid for the case of N warehouses (induction hypothesis).
Then, the optimal solution of SP1N , given by
SP1N Min
XN
i¼1

�
CSi

ffiffiffiffiffi
Ui

p
� kiUi

�

s:t: :
XN
i¼1

Ui ¼ VT

U1;U2; . . . ;UN P 0

ðA:8Þ
this appendix, k in expression SP1k , is the number of warehouses intervening in the sub-problem.
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is found by doing:
U �
i ¼ VT i ¼ w

0 i 6¼ w

�
ðA:9Þ
for some w 2 f1; . . . ;Ng. We must demonstrate the property for the problem with N þ 1 ware-
houses:
SP1Nþ1 Min
XNþ1

i¼1

CSi
ffiffiffiffiffi
Ui

p
� kiUi

s:t: :
XNþ1

i¼1

Ui ¼ VT

U1; . . . ;UN ;UNþ1 P 0

ðA:10Þ
This problem can be decomposed as follows:
SP1Nþ1 Min CSNþ1

ffiffiffiffiffiffiffiffiffiffiffi
UNþ1

p
� kNþ1UNþ1 þ V ðUNþ1Þ

s:t: : 06UNþ1 6 VT
ðA:11Þ
where
V ðUNþ1Þ ¼ Min
XN
i¼1

CSi
ffiffiffiffiffi
Ui

p
� kiUi

s:t: :
XN
i¼1

Ui ¼ VT � UNþ1

U1;U2; . . . ;UN P 0

ðA:12Þ
Solving V ðUNþ1Þ is equivalent to solve SP1N replacing VT by VT � UNþ1. Then, considering the
induction hypothesis, the optimal solution of V ðUNþ1Þ is given by
U �
i ¼ VT � UNþ1 i ¼ w

0 i 6¼ w

�
ðA:13Þ
for some w 2 f1; . . . ;Ng. Thus, SP1Nþ1 can be written as follows:
SP1Nþ1 Min CSNþ1

ffiffiffiffiffiffiffiffiffiffiffi
UNþ1

p
� kNþ1UNþ1 þ CSw

ffiffiffiffiffiffi
Uw

p
� kwUw

s:t: : UNþ1 þ Uw ¼ VT

UNþ1;Uw P 0

ðA:14Þ
This problem has the same structure of SP12, then optimal solution for SP1Nþ1, based on Part I,
can be obtained choosing the warehouse t, between N þ 1 and w, so that if
CSNþ1

ffiffiffiffiffiffi
VT

p
� kNþ1VT 6CSw

ffiffiffiffiffiffi
VT

p
� kwVT , then t ¼ N þ 1, and otherwise t ¼ w. We have then

demonstrated the property used for solving sup-problem SP1.
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Appendix B

In this appendix we show the generic version of the LR heuristic used to solve the DNDRP
model. LR heuristic was implemented in Visual C++ 5.0, considering an interface with LINGO
6.0, to solve the sub-problem SP3.

begin
ki :¼ 0 and li :¼ 0, for every i ¼ 1; . . . ;N ;
k :¼ 0;
l :¼ 0;
S1 :¼ e1þ 1;
S2 :¼ e2þ 1;
while k6N max 1 and l6N max 2 and S1 > e1 and S2 > e2 do
begin

solve the sub-problems SP1k and SP2k (based on the procedures stated in Section 5.1);
compute violations for every relaxed constraints, VUk and VDk, based on Eq. (33);
compute lower and upper bound for every iteration k, ZInf

k yZSup
k , respectively, using Eqs.

(37) and (39);
update Lagrangian multipliers, ki, and li for i ¼ 1; . . . ;N , according to the expression
(5.16);
update counters k and l, and recalculate S1 and S2.

end
end

k is a counter for the algorithm�s iterations, which has a maximum value of N max 1. l counts the
consecutive iterations in which the upper bound has not been improved, for which there is a limit
given for N max 2. S1 computes the relative difference between lower and upper bounds for every
iteration, for which is required a maximum value given by e1. S2 computes the maximum relative
difference between two consecutive values of kki and lk

i , for i ¼ 1; . . . ;N . This maximum difference
has a threshold given by e2 (the heuristic stops when this value is reached). The first two con-
vergence criteria are established when the problem has a duality gap 5 greater than e1.
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